Generalized Convolution Identities for Stirling Numbers of the Second Kind

نویسندگان

  • Takashi Agoh
  • Karl Dilcher
چکیده

We prove an identity for sums of products of an arbitrary fixed number of Stirling numbers of the second kind; this can be seen as a generalized convolution identity. As a consequence we obtain two polynomial identities that also involve Stirling numbers of the second kind.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...

متن کامل

Convolution Properties of the Generalized Stirling Numbers and the Jacobi-Stirling Numbers of the First Kind

In this paper, we establish several properties of the unified generalized Stirling numbers of the first kind, and the Jacobi-Stirling numbers of the first kind, by means of the convolution principle of sequences. Obtained results include generalized Vandermonde convolution for the unified generalized Stirling numbers of the first kind, triangular recurrence relation for general Stirling-type nu...

متن کامل

Convolution Identities for Stirling Numbers of the First Kind

We derive several new convolution identities for the Stirling numbers of the first kind. As a consequence we obtain a new linear recurrence relation which generalizes known relations.

متن کامل

Stirling Numbers and Generalized Zagreb Indices

We show how generalized Zagreb indices $M_1^k(G)$ can be computed by using a simple graph polynomial and Stirling numbers of the second kind. In that way we explain and clarify the meaning of a triangle of numbers used to establish the same result in an earlier reference.

متن کامل

Convolution Identities for Stirling Numbers of the First Kind via Involution

We provide bijective proofs of some recent convolution identities for the Stirling numbers of the first kind, which were proven earlier using algebraic methods, by defining appropriate sign-changing involutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008